tecnología | Publicado el 5 de marzo de 2018

La basura que cayó del espacio

Instituciones estadounidenses y europeas están empezando a hacer esfuerzos por disminuir los residuos en el espacio. FOTO sstock

Por Silvia Hernando

El cielo comenzó a escupir bolas de metal. La primera impactó en Pozorrubio de Santiago, en la provincia de Cuenca. Otro objeto similar se precipitó esa misma jornada sobre Elda, en Alicante. Pocos días después se contabilizaron hasta tres esferas, esta vez en distintos puntos de la región de Murcia. Los hechos se registraron a lo largo de casi dos semanas en noviembre de 2015. Y aunque pudiera parecer un panorama digno del relato apocalíptico, lo cierto es que el origen de aquellos fragmentos de entre unas decenas de centímetros y cuatro metros de diámetro era bien profano: se trataba de pedazos de basura espacial que reentraron en nuestro planeta.

Cuando en 1957 Rusia lanzó el primer Sputnik, al parecer nadie se preocupó por lo que pasaría con los satélites cuando se les acabara el combustible, sufrieran un accidente o, simplemente, dieran por finalizada su misión. Tras seis décadas de carrera espacial y más de 7.000 aparatos enviados al universo, esa dejadez tiene una consecuencia evidente: muchos se quedan allí, acumulándose en un vertedero flotante. Como un descomunal enjambre, hoy rodean el globo unas 7.000 toneladas de desperdicios, en parte satélites completos y en parte fragmentos resultantes de explosiones y choques, así como piezas de los cohetes con los que se propulsan. A ellos se suman, en el gran basurero que nos rodea, los micrometeoritos de origen natural. “Al principio, las naciones no eran conscientes del problema”, señala el británico Emmet Fletcher, responsable de comunicación de la Agencia Espacial Europea (ESA) en Villafranca del Castillo, Madrid.

¿Dónde están los residuos?

Aquella lluvia de chatarra de 2015 no es el único ejemplo documentado en España, menos aún en el mundo: en los últimos 50 años, el aguacero ha sido constante. La Nasa ha registrado una media de una pieza caída cada día, entre 50 y 100 toneladas al año. Casi siempre en el mar, que ocupa el 71 % de la superficie terrestre, “o en zonas poco pobladas como la tundra canadiense, el desierto australiano o Siberia”. Sin daños personales graves documentados, el riesgo que entrañan estos desperdicios tiene mucho más que ver con lo que ocurre arriba que aquí abajo. Cuantos más satélites se envían al espacio, más basura se genera. En su deriva a velocidades de vértigo, estos residuos ponen en peligro tanto la seguridad de los aparatos en servicio como la viabilidad de las futuras misiones. Para mitigar el problema, países como Reino Unido y Japón están probando tecnologías con las que limpiar el espacio. Además, en paralelo al catálogo que EE. UU. lleva décadas elaborando para hacer un seguimiento de los objetos y alertar de un peligro de colisión a los satélites operativos, la agencia europea está desarrollando una iniciativa similar: un proyecto para la vigilancia y control de restos de basura llamado SST, que cuenta con una importante participación española.

Los desechos se amontonan en las regiones del firmamento que ofrecen mayores ventajas para el funcionamiento de los satélites. El 70 % de los desperdicios se aloja en una franja del espacio que se extiende entre los 200 y los 2.000 Km de altura. Es la llamada LEO, órbita baja que rodea a la Tierra. “Es donde vuelan los satélites que mapean el planeta para la agricultura o la observación del cambio climático”, explica Fletcher. Aquí también, a unos 400 Km de altura, navega la Estación Espacial Internacional (EEI), centro de investigación permanentemente tripulado. Aquí, la basura no solo pone en peligro al equipamiento, sino a las personas. A pesar de las enormes distancias con las que se juega en el espacio, se han llegado a tomar fotografías de residuos espaciales “pasando al lado de la EEI”, como ilustra el técnico de la ESA. Más aún: entre otros incidentes, en 2016 una bolita golpeó una cúpula —por supuesto, blindada— de la nave, abriendo una muesca de varios milímetros en el cristal.

Desechos en movimiento

Si la basura se mantuviera estática, todo sería más fácil. Pero en la órbita LEO se mueve a velocidades de entre siete y ocho Km por segundo: casi siete veces más rápido que una bala. “Si uno de esos pedazos colisiona contra un satélite operativo, lo puede destrozar”, sentencia Fletcher. La imagen es tan poderosa como inquietante: una pieza del tamaño de un euro que revienta una millonaria obra de ingeniería. Para evacuar el espacio de satélites muertos, los operadores deberían dejar una reserva de combustible suficiente para devolverlos a tierra una vez finalizada su vida útil. Pero, pocas veces se cumple. Por su cercanía a nuestro planeta, en esta región baja la gravedad terrestre termina haciendo el trabajo. Aunque lentamente: con el tiempo, el deterioro orbital provoca que los objetos acaben reentrando en la atmósfera al cabo de varios o incluso cientos de años, dependiendo de la distancia. Antes de tocar el suelo terrestre suelen desintegrarse, pero a veces sobreviven para espanto de quienes los ven caer, como ocurrió en 2015.

La otra zona del espacio donde se hacinan los residuos es la órbita geoestacionaria, GEO. Esta se halla mucho más lejos, a unos 36.000 km de altura. Al girar en sincronía con la Tierra, las naves que vuelan en la GEO parecen quietas con respecto a un punto fijo. Esa característica hace de este anillo un terreno muy cotizado por los operadores de satélites de telecomunicaciones. Que son los más rentables. “Allí no hay tanta basura, porque los satélites se tienen controlados”, precisa Miguel Ángel Serrano, directivo de la operadora Hisdesat. Aquí el quid reside en los precios: cada posición orbital en la GEO, que se asigna a los países a través de la Unión Internacional de Telecomunicaciones (UIT, parte de la ONU), cuesta mucho dinero, asegura Serrano: “Por eso los operadores se encargan de dejar combustible para lanzar los satélites difuntos más lejos, a la llamada órbita cementerio, aún más lejana”. De este modo, el hueco que se libera se puede usar para colocar otro satélite.

Entre los precavidos ya hay voces que alertan de que esta solución solo servirá para perpetuar el entuerto. “La órbita cementerio es un lugar donde podemos tener vigilados los satélites, que no deberían desplazarse (por el deterioro orbital) a las órbitas operativas en al menos cien años”, apunta Fletcher. “Así que sabemos que por lo menos en un siglo no va a causar problemas”. El remedio, viene a decir, lo tendrán que encontrar nuestros nietos.

Y va empeorando

Para Serrano, aun sin haber alcanzado un punto crítico, la situación se presenta “cada día más grave”. El ingeniero aeronáutico madrileño, trabaja como jefe de operaciones en Hisdesat, sociedad perteneciente en un 30 % al Ministerio de Defensa que opera satélites de comunicaciones y para la observación de la Tierra. Desde el móvil o la televisión satelitales hasta el GPS, pasando por innumerables misiones científicas y militares, el engranaje del mundo contemporáneo depende irrenunciablemente de cómo se gestiona lo que ocurre allende las nubes. La buena noticia que apunta Serrano: “Que la gente se está concienciando y empieza a haber una legislación”. ¿La mala? Aunque Naciones Unidas propone directrices a través de su Oficina para Asuntos del Espacio Exterior (Unoosa), estas no son de obligado cumplimiento.

Los avisos de peligro de colisión forman parte de la rutina de quienes manejan los satélites. “Ocurren casi todas las semanas, por no decir días, sobre todo en las órbitas bajas”, explica Serrano, que detalla que son ellos, los propios operadores, quienes definen el umbral de los riesgos que están dispuestos a asumir, ya que en este entorno no existen las certezas, sino solo las probabilidades. En Hisdesat, por ejemplo, nunca han resuelto realizar ninguna maniobra de desplazamiento, ni tampoco han tenido ningún accidente grave. Los satélites de la ESA, no obstante, se mueven entre una y dos veces al año. Y la Estación Espacial Internacional, una.

Mientras unos se dedican a detectar y catalogar la ingente cantidad de basura espacial para intentar mantenerla bajo control con el fin de evitar males mayores, otros buscan la manera de deshacerse de ella. En este campo hay ideas como: el uso de brazos robóticos, láseres o esponjas ultrafinas capaces de absorber la chatarra. A comienzos del año pasado, la Agencia Espacial Japonesa (Jaxa) testó un sistema con cables para atrapar la basura que resultó técnicamente fallido.

En la Universidad de Surrey, en Reino Unido, esperan lanzar este 2 de abril la misión experimental RemoveDebris, financiada en su mayoría con fondos de la UE. Van a poner a prueba varias ideas: una red para capturar objetos, un arpón, un mástil de arrastre y un sistema de visualización.

“Estas tecnologías sirven para aprehender los desechos, traerlos de vuelta a la Tierra y hacer que se quemen en la atmósfera”, adelanta Guglielmo S. Aglietti, director del Centro Espacial de Surrey. “Además, se trata de una tecnología low cost, 15 millones de euros, que es válida tanto para fragmentos muy grandes, de toneladas, como para otros más pequeños.

© EDICIONES EL PAÍS, 2018. Derechos reservados..

42.120

km/h fue la velocidad a la que impactaron los satélites artificiales Iridium 33 y Cosmos 2251: NASA

En 2015, como si se tratara de meteoritos, algunos desechos espaciales de satélites artificiales cayeron en la Tierra. En órbita hay toneladas de residuos que ponen en peligro satélites y personas.

Contexto de la Noticia

EE. UU. lleva décadas recopilando datos en un catálogo, en el que han documentado más de 22.000 objetos mayores de 5-10 centímetros, 3.600 de los cuales son satélites enteros y 1.000 se encuentran en funcionamiento. Por debajo de ese tamaño resulta muy complicado detectarlos, pero calculan que sobrevuelan nuestras cabezas unos 500.000 pedazos de entre 1 y 10 centímetros. Los más pequeños, como un grano de arroz o menos, se contarían por decenas de millones. Dependiendo de su situación, se utiliza un tipo de sensor para rastrearlos: “Radares para las órbitas bajas y telescopios para la geoestacionaria”, según explica Gian Maria Pinna, mánager del equipo de la ESA radicado en España que trabaja en la elaboración de un catálogo europeo de similares características al estadounidense.

Otras Noticias